Australian Systematic Botany, 2019, **32**, i–iii https://doi.org/10.1071/SBv32n6_ED

Advances in Legume Systematics 13

Colin Hughes A, Ashley Egan B,C, Daniel Murphy D and Tadashi Kajita E

The Advances in Legume Systematics (ALS) series has provided the venues for publishing outputs from the series of seven International Legume Conferences (ILC) held over the last four decades. The first two editions arising from the first ILC in 1978 at the Royal Botanic Gardens, Kew, were published in 1981. The first ten parts of ALS were published as a coherent series by the Royal Botanic Gardens, Kew Publishing, whereas more recent editions have been published as Special Issues of botanical journals - Part 11 in Australian Systematic Botany in 2003, and Part 12 in the South African Journal of Botany in 2013. This, the 13th edition of the ALS series, is here published as a Special Issue of Australian Systematic Botany, and includes papers arising from the 7th ILC held in Sendai, Japan, in September 2018. The ALS13 Special Issue includes a potpourri of papers spanning the full spectrum of topics and research activities in current legume systematics, namely fossils, morphology, classification and taxonomy, ethnobotany, genomics and informatics. When referring to the Special Issue as a whole it should be cited as Hughes, Egan, Murphy and Kajita, ALS13; however, individual papers should be cited where relevant.

Legumes have a rich fossil record spanning the last 60 million years and this record is further enhanced here by Herrera *et al.* (2019) who return to the Cerrejón and Bogotá midto late-Paleocene formations and fossil assemblages in Colombia where the earliest definitive legume fossils were first documented by Wing *et al.* (2009). They describe a large set of interesting legume fossils comprising more than 500 specimens representing 6 putative leaf and 8 fruit fossil morphotypes. This spectacular set of fossils confirms that legumes were abundant at both these sites in the Paleocene rainforests of northern South America 60–58 million years ago, and that the family was already diverse at that time, with probably at least three of the six legume subfamilies represented.

Extrafloral nectaries (EFNs) involving ecologically important ant-plant protection mutualisms are very frequent

in legumes. Marazzi *et al.* (2019) present a major review of the phylogenetic distribution, morphological diversity and evolution of extrafloral nectaries (EFNs) across the legume family. This review brings together a large body of new data on the occurrence of EFNs in legumes assembled since the last synthesis by McKey (1989). Marazzi *et al.* (2019) present the first comprehensively curated list of legume genera with EFNs, increasing the number of genera known to have EFNs to 153, or ~20% of legume genera. A revised classification of legume EFNs is presented and the different EFN categories are mapped onto a time-calibrated version of the Legume Phylogeny Working Group (2017) legume phylogeny showing the different EFN types had independent evolutionary trajectories.

High throughput sequencing is revolutionising all aspects of plant biology and legumes have been at the forefront of this revolution with early genome sequencing of a suite of crop and model legume species. All of the initially sequenced legume genomes are in subfamily Papilionoideae, but legume genomics is now rapidly expanding across the other legume subfamilies. This rising tsunami of genomic data is opening up massive new opportunities in legume biology across disparate fields from phylogenomics to legume crop breeding, and from legume diversity assessment to conservation of legume genetic resources. Some of the most exciting developments are associated with understanding the genetic basis and evolution of key legume functional traits, such as nodulation (e.g. Griesmann et al. 2018), ushering in a new era of comparative legume genomics. This legume genomics revolution is thoroughly reviewed here by Egan and Vatanparast (2019) who present a detailed synthesis of these burgeoning new data and what they mean for both pure and more applied aspects of legume biology.

Plastid genome sequences are rapidly proliferating across legumes (with now several 100 published plastid genomes) and there is a rapidly growing number of nuclear genomes (currently ~37 – see Egan and Vatanparast 2019) now at

^ADepartment of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland. Email: colin.hughes@systbot.uzh.ch

^BDepartment of Biosciences, Aarhus University, Ny Munkegade 116, DK-8000 Aarhus, Denmark. Email: ashegan2@gmail.com

^CPresent address: Department of Biology, Utah Valley University, 800 W University Parkway, Orem, UT 84058, USA.

^DRoyal Botanic Gardens Victoria, Melbourne, Vic. 3141, Australia. Email: daniel.murphy@rbg.vic.gov.au

^EIriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Taketomi-cho, Okinawa, 907-1541, Japan. Email: kajita@mail.ryudai.jp

various stages of assembly. However, sequencing and assembly of plant mitochondrial genomes has lagged behind. Here, Zhang et al. (2019) present the mitochondrial genome of Castanospermum australe, bringing the total number of legume mitochondrial genomes to 33 (see Egan and Vatanparast 2019). They also compare this newly sequenced genome to ten other legume mitochondrial genomes, detect genes, and present a phylogenetic analysis, suggesting that the mitochondrial genome can be phylogenetically informative even at deep levels within legumes.

ii

It makes sense that legumes, as one of the largest and most economically and ecologically important plant families, were the focus of some of the earliest pioneering work to develop online species databases and information systems from the 1980s onwards, notably through the International Legume Database & Information System (ILDIS). However, despite this early prominence of legumes in biodiversity informatics, in recent years it has become increasingly clear that a new and more modern database and species information system for legumes is required. In a paper produced under the umbrella of the Legume Phylogeny Working Group (Bruneau et al. 2019) the history of legume databasing and ILDIS is reviewed, the value of taxon-centric information systems is discussed in relation to wider global biodiversity databasing initiatives, and exemplar species information systems for other taxonomic groups are surveyed. This survey provides the foundations and a road-map for a much-needed new online species information system for legumes. We very much encourage this new initiative to reinstate legumes at the forefront of species informatics; we endorse the on-going value of taxon-centric information systems and encourage the development of a system that can interface efficiently with key global taxonomic, specimen and trait databases; we look forward to a state-of-the-art new legume species information system.

This proposed new legume information system will be useful for myriad sub-disciplines in science, with trait details of various sorts compiled into a searchable and expandable database, including information on economic uses and ethnobotany of legumes. Here, van Wyk (2019) presents a review of economic and ethnobotanical uses of legumes in South Africa. Regression analyses inform on the relative distribution of endemic taxa across the family and also suggest that tribes Phaseoleae and Millettieae have been favoured in the selection of useful plants.

ALS Part 13 continues the strong tradition of the ALS series in supporting taxonomic initiatives and discoveries, and includes three such taxonomic papers. Lewis *et al.* (2019) describe two new species of *Poecilanthe* from Brazil and Bolivia, and present a summary of the current generic circumscription of the papilionoid legume tribe Brongniartieae (Benth.) Hutch., to which *Poecilanthe* belongs. De Queiroz *et al.* (2019) describe a new species in *Tephrosia* and present a key to the South American species of this large pantropical genus, update synonymy, and present several new lectotypes. Finally, de la Estrella *et al.* (2019) tackle generic delimitation issues in the *Englerodendron–Anthonotha* clade using a new and as yet only partially published backbone phylogeny of subfamily Detarioideae based on hybrid capture of nuclear gene sequences (Ojeda *et al.* 2019). They demonstrate the non-

monophyly of the genera *Englerodendron*, *Isomacrolobium* and *Pseudomacrolobium*, consigning the latter two genera to synonymy under an expanded *Englerodendron*, and presenting a key for the identification of the now 17 species assigned to that genus. This paper exemplifies the on-going efforts to align legume genera to robustly supported monophyletic groups, efforts which lie very much at the heart of current legume systematics

Conflicts of interest

Colin Hughes and Ashley Egan are ALS13 Associate Editors; Daniel Murphy is the *Australian Systematic Botany* Editorin-Chief; and Tadashi Kajita is the principal organiser of the 7th International Legume Conference, ILC7.

Declaration of funding

We thank the ILC7 organisers, the Tropical Biosphere Research Centre, University of Ryukyus (Japan), the University of Zurich (Switzerland), the University of Aarhus (Denmark), the Global Biodiversity Information Facility, the Royal Botanic Gardens, Kew (UK), l'Université de Montréal (Canada), the Japan Society for the Promotion of Science as part of the Grants-in-Aid for Scientific Research program for grant number 16K07234 to Firouzeh Javadi, Kyushu University (Japan), the Royal Botanic Gardens Victoria (Australia), and Chicago Botanic Garden (USA) for funds to support Open Access publication of this Special Issue of *Australian Systematic Botany*.

Acknowledgements

The editors thank all the people who have promptly and willingly stepped forward to review papers, as well as Brendan Lepschi and especially Anna Monro, nomenclature editors on several of the papers included here. Finally, the journal editorial staff at CSIRO Publishing and especially Brietta Pike, Andrew Bullen, Megan Cummings and Megan Cheong, are thanked for expertly guiding this Special Issue through to publication.

References

- Bruneau A, Borges LM, Allkin R, Egan AN, de la Estrella M, Javadi F, Klitgaard B, Miller JT, Murphy DJ, Sinou C, Vatanparast M, Zhang R (2019) Towards a new online species-information system for legumes. Australian Systematic Botany 32(5–6), 495–518. [Paper compiled under the umbrella of the Legume Phylogeny Working Group, LPWG]. doi:10.1071/SB19025
- de la Estrella M, Wieringa JJ, Breteler FJ, Ojeda DI (2019) Re-evaluation of the genus *Englerodendron* (Leguminosae–Detarioideae), including *Isomacrolobium* and *Pseudomacrolobium*. *Australian Systematic Botany* **32**(5–6), 564–570. doi:10.1071/SB18075
- de Queiroz RT, de Moura TM, Gereau RE, Lewis GP, de Azevedo Tozzi AMG (2019) Resolving nomenclatural ambiguity in South American *Tephrosia* (Leguminosae, Papilionoideae, Millettieae), including the description of a new species. *Australian Systematic Botany* **32**(5–6), 555–563. doi:10.1071/SB19011
- Egan AN, Vatanparast M (2019) Advances in legume research in the genomics era. Australian Systematic Botany 32(5–6), 459–483. doi:10.1071/SB19019
- Griesmann M, Chang Y, Liu X, Song Y, Haberer G, Crook MB, Billault-Penneteau B, Lauressergues D, Keller J, Imanishi L, Roswanjaya YP (2018) Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis. *Science* 361, eaat1743. doi:10.1126/science.aat1743

- Herrera F, Carvalho MR, Wing SL, Jaramillo C, Herendeen PS (2019) Middle to Late Paleocene Leguminosae fruits and leaves from Colombia. Australian Systematic Botany 32(5–6), 385–408. doi:10.1071/SB19001
- Legume Phylogeny Working Group (2017) A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. *Taxon* **66**, 44–77. doi:10.12705/661.3
- Lewis GP, Tebbs M, Wood JRI (2019) Two new species of *Poecilanthe* (Leguminosae: Papilionoideae: Brongniartieae) from Bolivia and Brazil. Australian Systematic Botany 32(5–6), 547–554. doi:10.1071/SB19015
- Marazzi B, Gonzalez AM, Delgado-Salinas A, Luckow MA, Ringelberg JJ, Hughes CE (2019) Extrafloral nectaries in Leguminosae: phylogenetic distribution, morphological diversity and evolution. *Australian Systematic Botany* 32(5–6), 409–458. doi:10.1071/SB19012
- McKey D (1989) Interactions between ants and leguminous plants. In 'Advances in Legume Biology'. (Eds CH Stirton, JL Zarucchi) Monographs in Systematic Botany from the Missouri Botanical Garden 29, 673–718. (Missouri Botanical Garden Press: Saint Louis, MO, USA)
- Ojeda D, Koenen E, Cervantes S, de la Estrella M, Banguera-Hinestroza E, Janssens S, Migliore J, Demenou B, Bruneau A, Forest F, Hardy O (2019) Phylogenomic analyses reveal an exceptionally high number of evolutionary shifts in a florally diverse clade of African legumes. *Molecular Phylogenetics and Evolution* 137, 156–167. doi:10.1016/j.ympev.2019.05.002
- Van-Wyk B-E (2019) The diversity and multiple uses of southern African legumes. *Australian Systematic Botany* **32**(5–6), 519–546. doi:10.1071/SB19028
- Wing S, Herrera F, Jaramillo C, Gómez-Navarro C, Wilf P, Labandeira C (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical rainforest. Proceedings of the National Academy of Sciences of the United States of America 106, 18627–18632. doi:10.1073/pnas.0905130106
- Zhang R, Jin J-J, Moore MJ, Yi T-S (2019) Assembly and comparative analyses of the mitochondrial genome of *Castanospermum australe* (Papilionoideae, Leguminosae). *Australian Systematic Botany* **32**(5–6), 484–494. doi:10.1071/19014